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Abstract

A new method of locating partially visible two-dimensional
objects is presented. The method is used to locate complex
industrial parts that may contain several occurrences of
local features, such as holes and corners. The matching
process utilizes clusters of mutually consistent features to
hypothesize objects and also uses templates of objects to
verify these hypotheses. The technique is fast because it
concentrates on key features that are automatically se-
lected on the basis of a detailed analysis of computer-
aided design (CAD) models of the objects. The automatic
analysis applies general-purpose routines for building and
analyzing representations of clusters of local features that
could be used in procedures to select features for other lo-
cational strategies. These routines include algorithms for
computing the rotational and mirror symmetries of objects
in terms of their local features.
Key terms: object recognition, two-dimensional part lo-

cation, industrial vision, symmetry, computer vision, plan-
ning.

1. Introduction

One of the factors inhibiting the widespread develop-
ment of industrial automation is the robot’s inability
to acquire a part from storage and present it to a
workstation in a known position and orientation. In-
dustrial vision systems that are currently available,

like Machine Intelligence Corporation’s VS-100 vi-
sion system (Kinnucan 1981), Bausch and Lomb’s
OMNICON (Bausch and Lomb 1976), and Automa-
tix’s vision module (Reinhold and VanderBrug 1980)
can recognize and locate isolated parts against a con-
trasting background only. These systems recognize
binary patterns by measuring global features of re-
gions, such as area, elongation, and perimeter
length, and then comparing these values with stored
models. Many tasks fit the constraints of these sys-
tems quite naturally or can easily be engineered to
do so. However, there are also many important
tasks in which it is difficult or expensive to arrange
for the parts to be isolated and completely visible. In
this paper, we describe a technique for identifying
and locating partially visible objects on the basis of
two-dimensional models.
Tasks that involve the location of partially visible

objects range from the relatively easy, such as locat-
ing a single two-dimensional object, to the extremely
difficult, such as locating three-dimensional objects
jumbled together in a bin. In this paper, we concen-
trate on tasks that are two-dimensional in the sense
that the uncertainties in the location of an object are
in a plane parallel to the image plane of the camera.
This restriction implies a simple one-to-one corre-
spondence between (1) sizes and orientations in the
image and (2) sizes and orientations in the plane of
the objects.
This class of two-dimensional tasks can be parti-

tioned into four subclasses that are defined, with re-
spect to the complexity of the scene, as follows:

A portion of one object
Two or more objects that may touch one another
Two or more objects that may overlap one another
One or more objects that may be defective
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Fig. 1. Partial view of an
aircraft frame member.

Fig. 2. Mutually touching
parts in a tray.

Fig. 3. Overlapping parts. Fig. 4. Three parts, one of
which is defective.

This list is ordered roughly by the amount of effort
required to recognize and locate the objects. Exam-
ples of these subclasses are shown in Figs. 1-4.

Figure 1 shows a portion of an aircraft frame
member. A typical task might be to locate the pat-
tern of holes for mounting purposes. Since only one
frame member is visible at a time, each feature ap-
pears at most once, which simplifies feature identifi-
cation. If several objects can be in view simulta-
neously and can touch one another (as in Fig. 2), the
features may appear several times. Boundary fea-
tures such as comers may not be recognizable, even
though they are in the picture, because the objects
are in mutual contact. If the objects can lie on top of
one another (as in Fig. 3), even some of the internal
holes may be unrecognizable if they are partially or

completely occluded. Finally, if one of the objects is
defective (as in Fig. 4), its features are even less pre-
dictable and hence harder to find.

Since global features are not computable from a
partial view of an object, recognition systems for
these more complex tasks must be programmed to
recognize either local features, such as small holes
and corners, or extended features, such as a large
segment of an object’s boundary. Both types of fea-
tures, when found, place constraints on the positions
and orientations of their objects. Extended features
are in general computationally more expensive to
find, but they provide more information because
they tend to be less ambiguous and more precisely
located.
Given a description of an object’s features, the
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time the system requires for matching this descrip-
tion with a set of observed features appears to in-
crease exponentially with the number of features
(Karp 1972). Therefore, practical applications have
been restricted to relatively simple tasks like identi-
fying the holes in Fig. 1. The multiplicity of features
in Figs. 2-4 precludes the straightforward applica-
tion of any simple matching technique.
Three approaches have been explored for tasks in-

volving a large number of features. The first is to lo-
cate a few extended features instead of many local
ones (see for example, papers by Perkins [1978] and
Ballard [1981]). Even though it costs more to locate
extended features, the reduction in the combinatorial
&dquo;explosion&dquo; is often worth it. The second approach
is to start by locating just one feature and then use it
to restrict the search areas for nearby features (Tsuji
and Nakamura 1975; Holland 1976). Concentrating
on one feature may be risky, but here, too, the re-
duction in the total number of features to be consid-
ered is often worth it. The third approach is to side-
step the problem by hypothesizing massively parallel
computers that can perform matching in linear time.
Examples of these approaches include graph-match-
ing (Ambler et al. 1973; Bolles 1979a), relaxation
(Zucker and Hummel 1979; Barnard and Thompson
1980), and histogram analysis (Duda and Hart 1972;
Tsuji and Matsumoto 1978; Ballard 1981). The ad-
vantage of these approaches is that their decisions
are based on all the available information.

Although parallel computers surely will be avail-
able sometime in the future, in this paper we restrict
our attention to recognition methods for sequential
computers. The basic principle of the local-feature-
focus (LFF) method is to find one feature in an
image, referred to as the focus feature, and use it to
predict a few nearby features to look for. After find-
ing some nearby features, the program uses a graph-
matching technique to identify the largest cluster of
image features matching a cluster of object features.
Since the list of possible object features has been re-
duced to those near the focus feature, the graph is
relatively small and can be analyzed efficiently.
The key to the LFF method is an automatic fea-

ture-selection procedure that chooses the best focus
features and the most useful sets of nearby features.
This automatic-programming capability makes possi-

Fig. 5. Top-level block dia-
gram of the LFF method.

ble quick and inexpensive application of the LFF
method to new objects. As Fig. 5 shows, the train-
ing process, which includes the selection of features,
is performed once, and the results are used repeat-
edly.

In this paper, we describe the run-time system
first so as to clarify the requirements of the training
system. After describing the training system, we
conclude with an evaluation of the LFF method and
a discussion of possible extensions.

2. Run-Time System .

The run-time phase of the LFF system acquires
images of partially visible objects and determines
their identities, positions, and orientations. This pro-
cessing occurs in four steps:. :.

1. Reading task information
2. Locating local features
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Fig. fi. Half of a metal door Fig. 7. Binary image of the Fig. 8. The LFF worksta-
hinge. hinge part. tion.

3. Hypothesizing objects
4. Verifying hypotheses

The first step, as indicated in Fig. 5, is to enter the
object models, together with the list of focus fea-
tures and their nearby features. Then, for each
image, the system locates all the potentially useful
local features, forms clusters of them to hypothesize
object occurrences, and finally performs template
matches to verify these hypotheses. A simple task
will be used to illustrate the basic processing of
these steps. (Later, we will consider a few more dif-
ficult tasks that demonstrate additional capabilities of
the system.) The initial assignment is to locate the
object in Fig. 6, which is half of a metal door hinge,
in the image in Fig. 7.
The examples in this paper were produced by an

implementation of the LFF system in which the run-
time system is executed on a PDP-11/34 minicom-
puter and the feature selection runs on a VAX-
11/780. The run-time software is a modified version
of the SRI vision module software (Gleason and
Agin 1979), which recognizes and locates isolated,
completely visible objects in binary images. Figure 8
shows the LFF workstation. The camera is a Gen-
eral Electric TN2500 camera, which provides a 240-
by-240-pixel array. It views objects placed directly
beneath it on a light table. Gray-scale and binary
images are displayed on monitors, and the user inter-
acts with the system through a Tektronix display.
The fact that the current implementation locates
local features in binary images is due to the ready
availability of the appropriate software. However,
because the techniques for selecting and matching
clusters of local features are independent of the man-
ner in which the local features are detected, they can
be applied directly to the task of locating objects in
gray-scale images or in range data, given local fea-
ture detectors for such data.

2.1. TASK INFORMATION

The task information consists of the following:

Statistical descriptions of local features
Analytic descriptions of objects
A strategy for locating the objects

The local features are defined in terms of their ap-
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pearances in images. The objects and the locational
strategy are defined with respect to these local fea-
tures.

In the current implementation there are two types
of features, regions and comers. A region is de-
scribed with respect to its color (black or white),
area, and axis ratio (the ratio of its minor and major
axes). A corner is characterized by the size of its in-
cluded angle. Each property of a feature is assigned
an expected value and, if appropriate, a variance
about that value. Variances are important because
the system can use them to locate the features effi-
ciently. In particular, the system can use a feature-
vector pattern-recognition routine, such as the
nearest-neighbor algorithm used by the SRI vision
module, to identify features.
Although the object descriptions are used mainly

at run time to verify hypotheses, we will discuss
them before describing the strategies because they
contain a list of local features for each object. The
features in these lists are referred to as object or
model features, as distinguished from image fea-
tures, (i.e., those in images). Each object feature is
assigned a unique name and is described in terms of
its type and its position and orientation with respect
to the object. The positions and orientations have as-
sociated variances that are designed to model a com-
bination of the imprecision associated with manufac-
turing the object and the imprecision associated with
locating features in an image. The system uses these
variances to decide, among other things, whether the
distance between two image features is sufficiently

- close to the distance between two corresponding ob-
ject features to be called a match.

In the current implementation, a description of an
object also contains a description of its boundary.
The boundary is represented by a list of points defin-
ing a sequence of line segments that approximate the
boundary of the object. Once an object has been hy-
pothesized at a particular position and orientation in
an image, the boundary is rotated and translated to
that location and checked against the image.
The strategy portion of the task information,

which is a list of focus features and their nearby fea-
tures, is a reformulation of the object descriptions
into a procedure-oriented list of features for finding
the objects. For each focus feature there is a list of

nearby features that, if found, can be used to iden-
tify the focus feature and establish the position and
orientation of the object. The description of a nearby
feature includes its type, its range of distances from
the focus feature, its range of orientations with re-
spect to the focus feature (if it has an inherent orien-
tation), and a list of the object features, any one of
which it might be. Thus, after finding an occurrence
of a focus feature, the program simply runs down
the appropriate list of nearby features and looks in
the image for features that satisfy the specified cri-
teria. As it finds matching features it builds a list of
possible object-feature-to-image-feature assignments.
This list is transformed into a graph that is analyzed
by an algorithm for finding the largest completely
connected subgraph. The subgraph corresponds to a
set of assignments that can be used to hypothesize
an object.

Figure 9 contains the information produced by the
feature-selection phase for the task of locating the
hinge part shown in Fig. 6. Three types of local fea-
tures are described: holes, A-type comers, and B-
type comers. An A-type comer is a concave comer;
the hinge occupies three-quarters of a small circle
centered on the vertex. A B-type comer is a convex
comer. The hinge, according to its object descrip-
tion, has four holes, four A-type comers, and eight
B-type comers. The object-specific names for the
four holes are hole 1, hole 2, hole 3, and hole 4. (See
Fig. 14 for a definition of the object-feature names
used in Fig. 9.)
The best focus feature for locating a hinge, as

noted in the strategy, is a hole. The second best
focus feature is an A-type comer; the third best is a
B-type comer. According to the locational strategy,
once it has found a hole the system should look for
seven nearby features, the first of which is a B-type
comer that is between 0.527 and 0.767 in. from the
hole and whose orientation with respect to a vector
from the hole to the comer is between 155.62 and
180.00° or between - 180.00 and - 160.03°. If any B-

type corners are found that meet these criteria, they
are likely to be object feature B6. In this example
(Fig. 9), by checking all pairs of holes and B-type
corners, the training system has narrowed down
from eight to one the list of possible object features
for this type of comer with respect to a hole. This
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Fig. 9. Task information for
the hinge part.

reduction demonstrates the benefits possible from
training-time analysis. In the next few sections we
shall use the task information in Fig. 9 to illustrate
run-time processing.

2.2. LOCAL-FEATURE LOCATION

The goal of the feature-location step, which is the
first type of processing applied to a new image, is to

find features in the image that match the local-fea-
ture descriptions in the task information. The current
implementation locates all the features it can and
passes a list of them to the hypothesis-generation
step. The assumption is that in the future there will
be special-purpose hardware processors that can lo-
cate efficiently all local features in an image. If fea-
tures are relatively expensive to locate, however,
feature detection can be integrated into the hypoth-
esis-generation step to minimize processing time.

 at PENNSYLVANIA STATE UNIV on May 9, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


www.manaraa.com
63

Fig. 9 (con t’d)

The current system locates regional features, such
as the holes described in Fig. 9, by finding regions in
the binary image whose properties are sufficiently
close to the nominal values. The system locates cor-
ners by moving a jointed pair of chords around the
boundaries and comparing the angle between the
chords to the angles defining the different types of
comers. Figure 10 shows the comers located in the
image in Fig. 7. This method of finding comers is

only one of many possible methods. It was chosen
for its simplicity and speed. It encounters difficulties
with rounded comers and its precision is influenced
by image quantization, but we have found it to be an
effective way of finding comers.
The product of the feature-location step is a list of

local features found in the image. Given the image-
feature numeration in Fig. 11, the list of features in
Fig. 10 will be the one shown in Fig. 12. At this
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Fig. 10. Corners detected in
Fig. 7.

Fig. 11. Image-.feature
numbers.

Fig. 12. List of local ,fea-
tures found in Fig. 7 and
their types.

Fig. l3. Nearby features
found around a hole and
their lists of the possible
object features.

stage in the processing, the program has not yet de-
termined the object-feature names-it has just deter-
mined their types (i.e., hole, A-type comer, or B-
type comer). To assign object-feature names, the
program has to analyze the relative positions and
orientations of the features. This processing is de-
scribed in Section 2.3.

2.3. HYPOTHESIS GENERATION

The goal of the hypothesis-generation step is to gen-
erate good hypotheses as fast as possible. As usual,
there is a trade-off between good and fast. The opti-

mum procedure is a function of the cost of verifying
a hypothesis relative to the cost of generating one.
The LFF system has been developed on the premise
that the cost of adequate verification is too large to
be ignored. Therefore, it is important to generate the
best hypotheses possible.
The run-time system hypothesizes objects by rec-

ognizing clusters of image features that match clus-
ters of object features. To find these clusters and
avoid as much of the combinatorial explosion as pos-
sible, the system locates one feature around which it
tries to &dquo;grow&dquo; a cluster. If this does not lead to a
hypothesis, the system seeks another focus feature
for a renewed attempt.

In the example of the hinge, the feature-selection
step rates holes as the best focus features. Conse-

quently, the system looks first for holes. For the
image in Fig. 7, the system starts with the upper-
most hole. Having selected one, the system then
searches the list of local features for those that fit
the specifications for features near holes. Figure 13
shows the nearby features found around the hole.
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Fig. 14. Local features of a
hinge part.

Fig. 15. List of object fea-
ture-to-image-feature as-
signments.

Fig. 16. Graph of pain vise-
consistent assignments.

Beside each feature is a list of the object features it
could be (see Fig. 14 for definitions of the object fea-
tures). Figure 15 lists this information in terms of
possible object-feature-to-image-feature assignments.
Given the list of possible assignments in Fig. 15,

the run-time system uses a graph-matching technique
to locate the largest clusters of mutually consistent
assignments. In the current implementation, the
technique being used is a maximal-clique algorithm
(see the Appendix). To apply this technique, the sys-
tem transforms the list in Fig. 15 into the graph
structure in Fig. 16. Each node in the graph repre-
sents a possible assignment of an object feature to
an image feature. Two nodes in the graph are con-
nected by an arc if the two assignments they repre-
sent are mutually consistent. To be mutually consist-
ent, a pair of assignments must meet the following
criteria:

The two object features must not refer to the same
image feature.

The two image features must not refer to the same
object feature.

The two image features must refer to object fea-
tures that are part of the same object.

The distance between the two image features must
be approximately the same as the distance be-
tween the two object features.

The relative orientations of the two image features
with respect to the line joining their centers
must be approximately the same as the relative
orientations of the two object features.

The assignment hole 1 to image-feature 1 is mutually
compatible with hole 2 to image-feature 2, because
image-feature 1 is approximately the same distance
from image-feature 2 as object-feature hole 1 is from

object-feature hole 2 in the analytic model. Hole 1 to
image-feature 1 is not mutually compatible with Hole
2 to image-feature 1, because both object features
are assigned to the same image feature. Similarly,
hole 1 to image-feature 1 is not mutually compatible
with Hole 1 to image-feature 2, because one object
feature cannot be assigned to two different image
features.
Once the graph has been constructed, the graph-

matching technique is used to extract the largest sets
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Fig. 17. Largest maximal
cligue for the graph in Fig.
16.,

of mutually consistent clusters of nodes. The largest
completely connected subgraph (i.e., the largest
maximal clique) for the hinge is shown in Fig. 17. It
contains four nodes representing the following as-
signments :

Hole 1 to image-feature 1
Hole 2 to image-feature 2
A2 to image-feature 8
B6 to image-feature 5

From these assignments, the system can compute
the translational and rotational offsets required to
align the analytic object with this cluster of image
features. Figure 18 shows the assignments of object
features to image features and a dashed line indicat-
ing the location of the hinge implied by these assign-
ments.

Occasionally, there is no unique &dquo;largest&dquo; com-
pletely connected subgraph. In that case, each sub-
graph is used to form a hypothesis. Thus, the anal-
ysis of a graph can produce more than one
hypothesis. It is the responsibility of the next phase
of the process to determine which, if any, of these
hypotheses are valid.

Fig. 18. Local-feature iden-
tities and a hypothesized
hinge location.

2.4. HYPOTHESIS VERIFICATION

The current system uses two tests to verify hypoth-
eses :

It looks at the image for other object features that
are consistent with the hypothesis.

It checks the boundary of the hypothesized object.

As the program finds image features that match pre-
dicted object features, it adds them to a list of veri-
fied features (which adds strength to the initial hy-
pothesis). It also uses the verified features to
improve its estimate of the position and orientation
of the object.
Given the refined estimate of an object’s location,

the program checks the boundary of the hypothe-
sized object to determine whether it is consistent
with the image. To do this, the system rotates and
translates the analytic boundary and analyzes the
contents of the image along the boundary. It takes
samples perpendicularly to the boundary and checks
for dark-to-light transitions (see Fig. 19). Light-to-
dark transitions and all-light samples are negative
evidence. All-dark samples are neutral.

If a sufficient number of object features is located
and the boundary verified, the system reports the
identity of the object, its location, and its orienta-
tion. As information to be utilized in higher-level
processing, it also reports how many features it was
able to locate, the number it expected to see in the
field of view, and the total number of features ex-
pected for the object. Finally, it marks the features
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Fig. 19. Segments exam-
ined to verify hinge bound-
ary.

Fig. 20. Verified hinge and
its feature labels.

Fig. 21. Cluster of features
used to locate the hinge
when one hole is covered

up.

Fig. 22. Cluster of features
used to locate the hinge
when all the holes are cov-
ered up.

as &dquo;explained&dquo; in the list of image features, so that
additional processing does not attempt to reexplain
them. Figure 20 shows the hinge with all of its fea-
tures labeled.
When a cluster of features leads to two or more

hypotheses, typically only one of them passes the
verification tests. If two or more competing hypoth-
eses pass the tests, however, the image is ambiguous
and the system signals the problem by declaring
each hypothesis as a &dquo;possible&dquo; match. Additional
data are required to disambiguate such cases.

2.5. EXAMPLES AND EXTENSIONS

To demonstrate the full capability of the run-time
system, we will consider a sequence of increasingly

difficult tasks. For example, if the hole that was
used as the focus feature in the previous task is cov-
ered up, the system is forced to select a different
focus feature-in this instance, another hole. A
completely different group of nearby features is
found (see Fig. 21) that matches a different cluster of
object features. However, the implied hypothesis is
the same.

If all the holes have been covered, the system is
forced to use the next type of focus feature-in this

case, an A-type comer. Once again, a completely
different cluster of features is found (see Fig. 22).
This cluster leads to two hypotheses, one for each of
the rectangular intrusions into the part. The verifica-
tion step selected the correct match.

In a more complex scene (Fig. 23), the system
uses many different clusters of local features to lo-
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Fig. 23. Image of four over- Fig. 24. Hinge parts lo- Fig. 25. Image of five Fig. 26. Hinges located in
lapping hinge parts. cated in Fig. 23. hinges, some of which are Fig. 25.

upside down.

cate the objects. This figure shows partially obscured
hinges that are touching and overlapping. Using the
techniques described above, the system is able to
identify and locate all four hinges (see Fig. 24). With
the current implementation, this processing takes ap-
proximately 8 s.
The run-time system also has the ability to recog-

nize and locate objects that are upside down in the
image. There is an operator-selectable option that in-
vokes special decision-making procedures to cope
with that possibility. If this option is selected, the
run-time system does the following.

When nearby features are found, they are allowed
two orientations; the one specified in the object
file and its mirror image.

When the &dquo;mutually compatible&dquo; check is made,
mirror-image orientations are allowed.

Once a hypothesis has been made, the system de-
termines whether the object is upside down by
analyzing three image features and their corre-
sponding object features. Using any one of the
three as a vertex, an included angle is computed
for the image features and another one for the
object features. If these included angles differ in
sign, the object is upside down.

If the system determines that an object is upside
down, it performs all subsequent processing,
(i.e., feature verification and boundary checking)
with a mirror image of the analytic object.

Figure 25 contains five hinges. The run-time system
is able to identify and locate all five of them (see
Fig. 26), even though three are upside down. This
processing takes about 25 s in the current implemen-
tation. The main reason for the increase in pro-
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cessing time for this example over that of the previ-
ous example (shown in Figs. 23 and 24) is that the
system has to distinguish among four similar objects:
the two-pronged hinge part, the three-pronged hinge
part, and the mirror images of these parts. The addi-
tional possibilities increase the sizes of the graphs to
be analyzed, which increase the processing times.

3. Training System

The primary design goal for the training system is to
make it as easy as possible to use. There are basi-
cally two ways to do this. One is to develop auto-
matic techniques for producing as much of the infor-
mation as possible and the other is to &dquo;human-
engineer&dquo; the system as well as possible. We have
concentrated on the first approach because we are
interested in developing ways to capitalize on the in-
formation that is commonly available for industrial
tasks, such as descriptions of objects and constraints
on viewing conditions. In this section, we will de-
scribe techniques for analyzing clusters of local fea-
tures and show how they can be used to produce the
information required by the LFF run-time system.
Since these techniques include algorithms for build-
ing and analyzing representations of the geometry of
local features, they could also be used to implement
automatic training systems for other locational strat-
egies based on local features (such as analyzing a
histogram of the orientations suggested by pairs of
local features [Stockman, Kopstein, and Benett
1982]).
The LFF training system is divided into two major

parts: model acquisition and feature selection. The
model-acquisition step produces models of objects to
be recognized, while the feature-selection step
chooses the best features for the LFF recognition
procedure.

3.1. MODEL ACQUISITION

The purpose of the model-acquisition step is to con-
struct models of the objects to be recognized. As
stated earlier, these models include descriptions of
the local-feature types and a list of local features as-

sociated with each object. There are several ways to
construct these models. In traditional teaching by
.rhowing, a user shows the system several examples
of an object and the system gathers statistics that are
used to estimate the expected values of the object’s
global features and their variances. This approach is
straightforward. It can be tedious, however, because
a large number of examples is required to produce
valid statistical models. Therefore, we are exploring
alternative teaching methods that do not require mul-
tiple examples.
There are two steps in our approach to defining an

object model. The first is specification of the nominal
positions and appearances of the local features. The
second is estimation of the variances associated with
these positions and properties. In the current sys-
tem, the user can either use a CAD model of an ob-

ject to specify the nominal values or interactively
point out features in an image of the object. The sys-
tem then uses analytic and probabilistic models of
the quantization errors to predict the variances about
these values. The variances for a region’s position
and area are computed by means of formulas devel-
oped by Hill (1980). Variances for the other proper-
ties, such as a region’s orientation or a comer’s po-
sition, are estimated by a Monte Carlo technique
that perturbs them in accordance with the predicted
size of an individual pixel.
We have tuned the current system so that it is

conservative in its estimates of variances. That is,
any errors in its estimates are overestimates. Slightly
inflated variances lead to somewhat longer recogni-
tion times, because more feature assignments are
consequently made and analyzed. On the other
hand, underestimates could cause the system to miss
marginal objects. In any event, users can adapt the
system to their specific needs.

3.2. FEATURE SELECTION

Given a set of object models, the feature-selection
process chooses key features and key clusters of fea-
tures for the LFF method. It selects a set of nearby
features for each type of focus feature and then
ranks the focus features according to the predicted
costs of using them to recognize and locate objects.
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To perform this selection and ranking, the process:

Identifies similar local features in different objects
Computes symmetries of the objects
Marks structurally equivalent features
Builds feature-centered descriptions of the objects
Selects nearby features
Ranks the focus features

Only the last two steps are specifically tailored to
the LFF method. The other steps could serve in the
preliminary analysis for other locational strategies.

3.2.1. Similar Local-Feature Types

Each object model contains descriptions of the types
of local features associated with that object. The
purpose of the first step in the feature-selection pro-
cess is to determine the similarity of these features
and produce a single list of local-feature types for
the set of objects being considered. Identifying simi-
lar features is important, because the system needs
to determine which features can be reliably distin-
guished on the basis of local information and which
cannot. Or, put another way, the system needs to
identify those features that can be distinguished only
by the clusters of features near them. Consider the
two objects in Fig. 27. Each contains three types of
holes, and each contains eight-inch and quarter-inch
round holes. Therefore, if the system is asked to rec-
ognize these two objects, it will combine the two
lists of hole types into one list containing four types.
The identification of similar features is straightfor-

ward if the ranges of the property values describing
the features are either disjoint or almost identical.
The difficulty arises if several feature descriptions
overlap in complex ways. The current system groups
features together if the ranges of their property
values (defined by the expected values and asso-
ciated variances) overlap significantly. The user can
specify the amount of overlap to be considered sig-
nificant and can modify the groups suggested by the
system. Reliance on the user for the final decision is
a basic principle in our design of a semiautomatic
programming system. The system automates as
much of the process as possible and displays the re-
sults for the user’s approval.
The incorrect grouping of features can lead to inef-

Fig. 27. A round electric
box cover and a sheet-
metal part.

ficient locational strategies. Grouping features that
are dissimilar forces the run-time system to use more

nearby features than necessary. The additional
nearby features increase the sizes of the graphs to be
analyzed, which in turn increase processing times.
The source of the inefficiency is the use of nearby
features to make distinctions that could be made reli-

ably on the basis of the features’ local appearances.
Not grouping features that are locally ambiguous

can also lead to inefficient strategies. In this case,
the feature-selection system is unaware of ambigui-
ties to be resolved-and hence selects sets of

nearby features that are not designed to make these
distinctions. As a result, the run-time system is
forced to proceed sequentially through possible in-
terpretations of a focus feature until a verifiable hy-
pothesis has been achieved. Since progressing
through interpretations is time-consuming, it should
be minimized. Thus, it is inefficient to form groups
that are either too small or too large. Determining
the best groups is difficult because it is a complex
function of the cost of generating and verifying hy-
potheses. The current LFF training system forms
reasonable groups for moderately difficult tasks and
provides a convenient way for the user to experi-
ment with variations of its suggestions for more diffi-
cult tasks.

3.2.2. Symmetries of Objects

Two fundamental properties of two-dimensional ob-
jects are their rotational and mirror symmetries.
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These properties are important in the recognition
and location of objects because they can be used to
identify key features that determine the orientations
of the objects and differentiate them from those that
are similar. These properties are especially important
in performing industrial vision tasks, in which sym-
metric, or almost symmetric, objects are common.
For example, the round part in Fig. 27 is twofold ro-
tationally symmetric (i.e., its appearance is un-
changed by a rotation of 180°). If it occasionally
occurs upside down in the scene, it is important to
know that it is not mirror-symmetric. Since it is not
mirror-symmetric, a vision system can detect upside-
down parts.
A few artificial intelligence programs have per-

formed symmetry analysis. Evans’s program (1968),
which worked geometric analogy problems, tested
the primitive figures to see whether they were mir-
ror-symmetric about a horizontal or vertical axis.
Gips’s program (1974) analyzed two three-dimen-
sional strings of cubes to determine whether they
were rotational or mirror transformations of each
other. Perkins’s program (1978) used a form of cor-
relation to determine whether a pattern was rotation-
ally symmetric. The latter program, like its counter-
parts, was not intended to perform a general-purpose
symmetry analysis aimed at understanding local fea-
tures, clusters of local features, and their properties.
It is precisely this kind of comprehensive under-
standing of objects for which the analysis in this sec-
tion are being developed.
Kanade (1981) has investigated skewed symmetry

in images and its relation to the gradient space of
surface orientations. He uses skewed symmetry to

hypothesize real symmetry in a three-dimensional
scene and to constrain the associated surfaces.
Wechsler (1979) describes an algorithm that decom-
poses two-dimensional regions into mirror-symmetric
components. His approach employs mathematical
descriptions and tests for symmetry that are similar
to the ones described in this section, but his goal is
to describe regions rather than characterize clusters
of local features. Silva (1981) describes a program
that derives rotational symmetry axes for three-
dimensional objects from multiple views of the ob-
jects. His task is more difficult than the problem dis-
cussed in this section because he is only given a set

Fig. 28. A twofold rotation-
ally symmetric object.

of images of the object, not an analytic model of it.
In the LFF system, local features are character-

ized by the following attributes:

Type (e.g., 90° comer or quarter-inch hole)
~1C y position in the object’s coordinate system
Orientation, if any, with respect to the x axis of

the object’s coordinate system
Rotational symmetry

Round holes do not have an inherent orientation. By
convention, the orientation of a comer is the orienta-
tion of the bisector of the angle pointing into the ob-
ject’s interior. Rectangular holes, such as the ones in
Fig. 28, are twofold rotationally symmetric and are
assigned a nominal orientation along the major axis
of the rectangle.
The position and orientation of a feature with re-

spect to the centroid of the object are important
quantities for symmetry analysis. They are defined in
terms of the vector from the centroid of the object to
the center of the feature. We refer to this vector as
the central vector for the feature. The angular posi-
tion of the feature is defined as the counterclockwise

angle from the x-axis of the object to its central vec-
tor. The distance of the feature from the centroid is

the magnitude of the central vector. The relative ori-
entation of the feature is the smallest counterclock-
wise angle from the central vector to one of the fea-
ture’s axes of symmetry (see Fig. 29). The relative
position and orientation of one feature with respect
to another is defined in terms of the three factors D,
81, and 02, as illustrated in Fig. 30.
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Fig. 29. Diagram of the reel-
ative position and orienta-
tion of a feature with re-
spect to an object.

Fig. 30. Diagram of the rel- Fig. 31. Relative orienta-
atiBJe position and orienta- tions of the corners of a
tions of one feature with re- rectangle.
spect to another.

The LFF system determines the symmetries of a
two-dimensional object in three steps: (1) formation
of groups of similar features that are equidistant
from the centroid of gravity of the object, (2) compu-
tation of the symmetries of the individual groups,
and (3) computation of the object’s symmetries with
respect to those of the groups.

Features are designated as similar for the purposes
of group formation if they are the same type, are
equidistant from the object’s centroid, and share the
same orientation relative to their central vectors.
Therefore, if two features are similar, the object can
be rotated about its centroid so that one feature will
be repositioned at the other feature’s original posi-
tion and orientation. For example, the four corners
of a square are similar. However, only the diago-
nally opposite comers of a rectangle are similar, be-
cause the relative orientations of two adjacent cor-

ners are different (see Fig 31). Therefore, in forming
groups for symmetry analysis, the system divides the
four corners of a rectangle into two groups.
The second step in the symmetry analysis com-

putes the rotational and mirror symmetries of each
group. If a group of N features is D-fold rotationally
symmetric, then D must be a divisor of N. There-
fore, to determine the rotational symmetry of a
group, it suffices to produce the list of factors of N
and test the group for D-fold symmetry for each fac-

tor, the largest first. To test for D-fold symmetry,
the system adds 360/Do to each of the angular posi-
tions of the features and compares the new positions
with the original. If all the new positions are within a
specified tolerance of the original ones, the group is
D-fold rotationally symmetric.

If a set of two-dimensional points is mirror-sym-
metric, there is an interesting relationship between
the axis of symmetry and the axis of least second
moment: they are either identical or perpendicular to
each other (Bolles 1979b). Therefore, to test a set of
points for mirror symmetry, it is not necessary to do
so in all possible orientations; it is necessary only to
compute the axis of minimum second moment and to
test the set for mirror symmetry about that axis and
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Fig. 32. An object, its axis
of least second moment,
and the axis perpendicular
to that axis.

the one perpendicular to it. Consider the five holes
in Fig. 32, which are mirror-symmetric. The axis of
second moment is the axis that points to the upper
right corner. The pattern is not mirror-symmetric
about the latter axis, but it is mirror-symmetric
about the axis perpendicular to it.
For a group of features produced by the first step

in the symmetry analysis to be mirror-symmetric,
their centers must form a mirror-symmetric pattern,
and each separate feature must be mirror-symmetric
about its central vector. The pair of slots in Fig. 28
is not mirror-symmetric, because the individual fea-
tures are not symmetric about their central vectors.
To test a group for mirror symmetry, the system
first checks one feature for mirror symmetry about
its central vector and then checks the pattern of the
centers for mirror symmetry.

It is interesting to note that a group of features,
such as the group of five holes in Fig. 32, can be
mirror-symmetric and not rotationally symmetric. It
is also possible for a group of features to be rotation-
ally symmetric, but not mirror-symmetric (e.g., con-
sider the pair of slots in Fig. 28).
The third step of the symmetry analysis computes

an object’s symmetries with respect to those of the
groups. The rotational symmetry of the object is
easy to compute. It is the greatest common divisor
of the symmetries of the groups (Bolles 1979b). The
mirror symmetry and associated axes of mirror sym-
metry are more complicated to determine. Once the
rotational and mirror symmetries of the groups are

known, it is possible to compute a list of mirror-
symmetry axes for each group. The basic idea is to
construct these lists and intersect them to produce
the mirror-symmetry axes of the object. However,
there is one special case to be considered. This case
is illustrated by the four comers of a rectangle. As
stated above, they are divided into two groups ac-
cording to their orientations relative to their central
vectors. Neither group is mirror-symmetric, because
the features are not mirro-symmetric about their cen-
tral vectors. But the set of four corners, taken as a

single group, is mirror-symmetric. The problem is
that groups can occur in conjugate pairs. Therefore,
to test an object for mirror symmetry, the system lo-
cates mirror-symmetric groups and pairs of groups
that form mirror-symmetric patterns conjointly. If all
the features of an object occur in mirror-symmetric
patterns and there exists at least one common mir-

ror-symmetry axis, the object is mirror-symmetric.
We have implemented these tests and confirmed

that they work well within the LFF system. We also
tried to incorporate them in a system for building
models automatically, for a large class of two-dimen-
sional objects, from images of the objects. We found
this goal hard to achieve, as it was difficult to formu-
late a general definition of &dquo;significant feature.&dquo;

3.2.3. Structurally Equivalent Features
If an object is rotationally symmetric, its features
occur in groups whose members are structurally
equivalent. That is, they cannot be distinguished on
the basis of their local appearance or on the basis of
the relative positions and orientations of other fea-
tures in the object. For example, since the round ob-
ject in Fig. 27 is twofold rotationally symmetric, its
features occur in pairs whose members are struc-
turally equivalent. The implication of structural
equivalence for the LFF method is that only one
member of a group of structurally equivalent fea-
tures has to be analyzed. Therefore, if an object is
rotationally symmetric, the number of features to be
considered can be reduced by a factor equal to its
rotational symmetry. Any reduction in the number of
features is important because of the combinatorial
aspects of the matching problem. A reduction in the
number of features by a factor of two or more is
quite significant.
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Having determined the symmetry of an object, the
system marks as duplicates those features that are
not to be regarded as focus features. Our initial
marking procedure arbitrarily divided the features
into rotational units, according to their angular posi-
tions with respect to the object’s x-axis, and marked
all features except those in the first unit. For exam-

ple, for an object that was twofold rotationally sym-
metric, all features whose angular positions were be-
tween 180 and 360° were marked as duplicates.
However, since the LFF system concentrates on
local clusters of features, an improved marking pro-
cedure was developed that locates the most compact
cluster of features constituting a complete rotational
unit. For the round object in Fig. 27, this procedure
divided the features into top and bottom halves, be-
cause the features are more closely grouped that
way than in another kind of partition. This new
strategy maximizes the intersection of the sets of

nearby features (relative to a focus feature), which in
turn minimizes the number of possible interpreta-
tions of the nearby features.

3.2.4. Feature-Centered Descriptions

The next step after the marking of duplicate features
is to build feature-centered descriptions of the ob-
jects for each unique feature. These descriptions are
designed to encode the information necessary for se-
lecting nearby features. They are essentially the
same as the descriptions generated by rotational
symmetry analysis, except that they are centered on
a local feature instead of the centroid of an object; in
addition, the orientation of that feature, if any, is
used in the formation of the groups.
The program builds a description for each nondu-

plicate feature. It does this by partitioning all fea-
tures of the object, whether or not they have been
marked as duplicates, into groups-and then com-
puting the rotational symmetries of the groups. Fea-
tures are grouped together if they are equidistant
from the focus feature, are at the same orientation
with respect to vectors from the focus feature, and if
the focus feature is at the same orientation with re-

spect to vectors from the features to be grouped (see
Fig. 30 for these relative angles). If two features are
grouped together, they cannot be distinguished by

Fig. 33. Feature-centered
description of the hinge
with respect to one of’ its
holes.

their relative positions or orientations with respect to
the focus feature. Looked at another way, if two fea-
tures are in the same group, the structural unit com-

posed of the focus feature and one of those features
is identical to the structure formed by the focus fea-
ture and the other nonfocus feature. Figure 33 illus-
trates the grouping of features around a hole in the
hinge part.

3.2.5. Nearby-Feature Selection

Given feature-centered descriptions of the objects to
be recognized, the nearby-feature selection step
chooses a set of nearby features for each type of
focus feature. It uses the feature-centered descrip-
tions to suggest nearby features and evaluate them
by locating matching features near other occurrences
of the focus feature. As described in the discussion
of the LFF task information (Section 2.1), a nearby
feature is not really a feature; it is rather a set of cri-
teria describing a class of features with respect to
another feature. Therefore, in an image or in an ob-
ject model there may be zero or more features that
fit these criteria in the vicinity of a particular focus
feature. The selection procedure creates descriptions
of nearby features from examples of features in the
models.
The basic requirement for a set of nearby features

with respect to a focus feature is that the set contain

enough features to identify the structurally different
occurrences of the focus feature and establish the
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Fig. 34. A unique cluster of
nearby features for each
hole.

Fig. 35. Distance ranges for
B-type corners with respect
to a hole.

position and orientation of the object with respect to
that feature. In other words, having found the fea-
tures that match the nearby-feature descriptions, the
system should be able to identify the focus feature
and all nearby features, then compute the position
and orientation of the object. For example, Fig. 34
shows four clusters of features that are sufficiently
different to enable the hole they are centered upon
to be identified and the object’s position and orienta-
tion computed.
The current strategy for selecting nearby features

is a two-step process:

1. Select nearby features to identify the focus
feature.

2. Select additional features, if necessary, to de-
termine the position and orientation of the
object.

Features used to identify the focus feature are cho-
sen first because the selected features almost always
determine the position and orientation of the object
as well. Features selected to determine the position
and orientation often do not identify the focus fea-
ture.

When an additional feature is needed, those clos-
est to the focus feature are considered first. The as-

sumption is that features close to an observed fea-
ture are the most likely to be visible, both because
they will probably be in the image and because they
are less likely to be occluded.
To illustrate the selection process, consider the

task of choosing nearby features for the hinge part

shown in Fig. 14. There are three types of local fea-
tures and hence three possible focus features: holes,
A-type comers, and B-type comers. Let us start by
selecting features for a hole-type focus feature. The
first goal is to select nearby features that will allow
us to identify which of the four holes has been
found. To do this, the system selects features that
differentiate between pairs of possible interpreta-
tions. That is, it chooses features to distinguish hole
1 from hole 2, hole 1 from hole 3, and so on. To dis-
tinguish hole 1 from hole 2, it selects comer B6 with
respect to hole 1 (see Figs. 14 and 35). Comer B6 is
the closest feature to either hole 1 or hole 2 and can
be used to distinguish hole I from hole 2 because the
latter does not have a B-type comer at that distance.
In fact, since hole 1 is the only hole to have a B-
type comer near it like B6, this one feature distin-
guishes hole 1 from any of the other three holes.

If the run-time system finds a hole and a B-type
comer such that the comer is at B6’s relative posi-
tion and orientation, the hole is probably hole 1 and .

the comer is probably B6. For a couple of reasons,
the system cannot be absolutely positive that the 

.

pair of features it has found is B6 next to hole 1.
First, two hinges may be stacked in such a way that
a B-type comer appears at the right distance and ori-
entation with respect to another hole. Second, some
noise along the boundary may look like a comer that
just happens to be at the right distance and orienta-
tion with respect to a hole. Even though the system
cannot be sure that the hole is hole 1 and the comer
is B6, finding a pair like that is generally sufficient
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Fig. 36. Sequence of nearby
features automatically se-
lected for hole-type focus

- feature.

evidence for hypothesizing an occurrence of the ob-
ject.

Having selected the B-type comer to distinguish
hole 1 from hole 2, the program’s next step is to
evaluate the contributions that feature makes toward

distinguishing other pairs and determining the ob-
ject’s orientation with respect to other holes. As al-
ready mentioned, the B6-type comer distinguishes
hole 1 from hole 3 and hole 1 from hole 4. It can
also be used to compute the orientation of the object
relative to hole 1. Since the other holes do not have
matching B-type comers, this nearby feature does
not help determine the orientation of the object with
respect to them.
The first line in Fig. 36 summarizes the contribu-

tion of this B-type comer near a hole. The goal of
the selection procedure was to select a feature to
distinguish hole I from hole 2 (written &dquo;Disting.
1 x 2&dquo; in Fig. 36). The comer B6 relative to hole 1
was selected. None of the other holes had matching
B-type comers. Therefore, that feature distinguishes
hole 1 from hole 2, hole I from hole 3, and hole 1
from hole 4. It also determines the orientation of the

object with respect to hole 1. The remainder of Fig.
36 summarizes additional selections for hole-type
focus features.

Since the B-type comer does not distinguish hole
2 from hole 3, the next subgoal of the feature-selec-
tion procedure is to choose a feature that will do
this. It chooses Al relative to hole 2 because it is
the closest feature to either hole 2 or hole 3,
whereas hole 3 does not have a matching A-type
comer. As indicated in Fig. 36, none of the other
holes have matching A-type comers. Comer A4 is at
approximately the same distance from hole 4 as Al
is from hole 2, but its relative orientation is suffi-
ciently different (as determined by the variances in
the object model) to be distinguishable.
To differentiate between hole 3 and hole 4, the

system selects B 1 with respect to hole 4. After this
nearby feature has been added to the list and the
contributions updated, the only subgoal left to be
achieved is to establish the orientation of the object
with respect to hole 3. To satisfy this subgoal, the
system selects the closest unused group of features
near hole 3. Since none of the features near hole 3
have been used, the first group, which is a pair of
holes, is added to the list. Hole 1 and hole 4 each
have one matching hole nearby, while hole 2 has two
such holes. Therefore, locating these holes can dis-
tinguish hole 1 from hole 2, hole 1 from hole 3, hole
2 from hole 4, and hole 3 from hole 4. Since patterns
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of holes around all four focus features are rotation-
ally asymmetric, they can be used to determine the
orientation of the object with respect to their focus
features.

This choice of holes near other holes points up a
weakness in the current selection procedure. It is de-
signed to use the closest unused feature that can
achieve the goal. Otherwise, it could have selected
A3 with respect to hole 3 to determine the orienta-
tion of hole 3. A3 is slightly farther from hole 3 than
the pair of holes. A3 is a better choice, however, be-
cause none of the other holes have matching A-type
comers, which means that fewer features would be
required at run time to perform the task.

Figure 34 shows the clusters of features implied by
the four types of nearby features that have been se-
lected for a hole-type focus feature. These clusters
are minimal in the sense that missing one of the fea-
tures at run time could lead to an ambiguity. A fea-
ture might not be detected for several reasons. It

might be occluded by another part; the part might be
defective in such a way that it did not have a B-type
comer in the expected position; the feature might be
out of the camera’s field of view; it might be so dis-
torted that the feature detector could not recognize
it. In the hinge example, missing B6 with respect to
hole 1 results in an ambiguity. The system expects
to find B6 and hole 2 near hole 1. If B6 is not de-

tected, the pair of holes is ambiguous; it could con-
sist of hole 1 and hole 3, hole 2 and hole 3, or hole 3
and hole 4.

If users of this automatic system want to incorpo-
rate some redundancy into the locational process,
they can request the system to include enough fea-
tures to achieve each goal in two or more ways. The
numbers under the columns in Fig. 36 indicate the
number of discrete ways of achieving each subgoal.
These numbers are referred to as redundancy fac-
tors. The first row of numbers summarizes the con-
tributions of the first four feature selections. There is
at least one way to achieve each goal, two ways to
achieve six of the goals, and three ways to achieve
two of them. If the user wants at least two different

ways to accomplish each goal, the system needs fea-
tures that distinguish hole 2 from hole 3 and deter-
mine the orientation of the object with respect to
hole 3. As indicated in Fig. 36, the system selects

A3 with respect to hole 3, which happens to satisfy
both subgoals. To obtain a redundancy factor of 3,
the system adds two more types of nearby features.
The higher the redundancy factor, the lower the

probability of not detecting enough features to iden-
tify the focus feature. However, increasing the list of
nearby features leads to larger graphs to be ana-
lyzed, which in turn lengthens the processing time
required to make hypotheses. In the case of the
holes in the hinge part, the average graph sizes are
10.75, 11.75, and 13.00 nodes for redundancy factors
of 1, 2, and 3 respectively. Sometimes the increase
is more dramatic. For example, the graph sizes for
A-type corners in the hinge are 5.50, 8.00, and 14.75
nodes for redundancy factors of 1, 2, and 3.
The optimum redundancy factor is a function of

several variables, including the costs of building and
analyzing graphs for producing hypotheses, the costs
of verifying hypotheses, and the probability of miss-
ing features at run time. For the current implementa-
tion, we have found that redundancy factors of 2 or
3 work well for images containing four or five over-
lapping objects, such as the hinge part. The cost of
making a hypothesis is approximately five times the
cost of verifying one, but the probability of not de-
tecting a feature at run time is so high that the extra
features are needed to ensure finding a sufficient set.

After selecting nearby features for a hole focus
feature, the system selects nearby features for the
other two potential focus features, A-type comers
and B-type comers. Figure 37 shows the clusters im-
plied by the nearby-feature selections for all three
focus features. A redundancy factor of 3 was used in
these selections. These nearby features are the ones
described in Fig. 9 and used for the examples in Sec-
tion 2. In the Section 3.2.6, we will describe a proce-
dure for deciding which focus feature to use first.

3.2.6. Focus-Feature Ranking

The LFF training system ranks the foci according to
the sizes of the graphs they imply, since the con-
struction and analysis of graphs are the most time-
consuming steps in the locational process. The sys-
tem constructs the clusters of features expected
around each occurrence of a focus feature (as shown
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Fig. 37. Nearby feature
clusters having a redun-
dancy factor of 3.

in Fig. 37), and then computes the sizes of the
graphs from the lists of interpretations for each fea-
ture. The final ranking of a focus feature is based on
the average size of its implied graphs. For the clus-
ters shown in Fig. 37, the average graph sizes are
13.00 nodes for holes, 14.25 for A-type comers, and
14.50 for B-type comers.

4. Discussion

The LFF system can easily be trained to locate par-
tially visible two-dimensional objects. Like all
methods, however, it is based on a set of assump-
tions that implicitly define the class of tasks it can
perform. In this section, we will discuss these as-

sumptions, their implications, and possible ways to
eliminate them.
The basic assumptions of the current implementa-

tion of the LFF system are the following.

1. The objects rest on a plane in one of a few
stable states.

2. The image plane of the camera is parallel to
the plane supporting the objects.

3. The objects can be recognized as silhouettes
in a binary image.

4. Each object contains several local features
that are at fixed positions and orientations in
the object’s coordinate system.

5. The objects can be distinguished on the basis
of relatively small clusters of nearby features.

6. Speed and reliability are important.
7. The more the training phase can be auto-

mated, the better.

The first and second assumptions combine to restrict
the tasks to those that can be performed by two-di-
mensional analysis. The assumptions imply a simple
one-to-one correspondence between features in an
image and features on an object. There is a direct
correspondence between distances and orientations
in the image and distances and orientations on the
support plane. The effects of a perspective
projection are minimized. Since three-dimensional
distances and orientations can be measured directly
in range data, an LFF-type recognition strategy
could be used to locate three-dimensional objects in
range data. We are exploring this possibility.
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Fig. 38. Image of one hinge
part almost directly on top
of another.

Fig. 39. Location of one of
the hinge parts in Fig. 38.

The third assumption applies only to the current
implementation. It is possible to implement an LFF
system that uses gray-scale feature detectors. The
types of object features and feature detectors would
change, but the basic recognition strategy would re-
main the same. Such a system would be rendered

particularly attractive by the inclusion of special-
purpose hardware designed to locate corners and
holes in gray-scale images.
The fourth assumption limits the class of objects

that can be recognized to those that have several
local features, such as comers and holes. The LFF
system cannot locate objects such as French curves
that are characterized by large, continuous arcs.
Other methods, such as generalized Hough tech-
niques (Ballard 1981) are better suited to this class of
tasks.

. The fourth assumption restricts the tasks to the
recognition of rigid objects. We plan to explore ways
to relax this constraint. In particular, we plan to in-
vestigate ways to locate objects with movable com-
ponents. A simple strategy would be to ignore any
features associated with such components. However,
often these transient features contribute important,
sometimes even crucial, constraints. How can they
best be captured? The answer may lie in a multi-
stage recognition procedure. We have already imple-
mented the LFF system as a two-step procedure in
order to deal with objects that are not mirror-sym-
metric. We originally treated an object and its mirror
image as two separate objects. However, since the
features and their relative distances are identical in

both objects, we soon found that it was much more
efficient to treat them as a single entity, relax our
constraints on the relative orientations of features,
and insert a second step in the recognition procedure
that uses pairs or triplets of features to ascertain
whether the object is right side up or upside down.
The fifth assumption emphasizes the fact that the

LFF system is not designed to recognize an object
by discerning one feature at one end of the part and
another feature at the other end. It is designed to
utilize local clusters of features. Figures 38-41 illus-
trate this point. Figure 38 shows two objects, one of
which almost completely covers the second. The
system recognizes one of these objects but not the
second, because the detectable features are too far
apart; they are not part of a local cluster. This coy-’
centration on local clusters is not as restrictive as
one might think. For, if the objects are only slightly
farther out of alignment (as in Fig. 40), local clusters
emerge and the system is able to locate both of them
(see Fig. 41). The LFF system, like all systems for
locating partially visible objects, is better suited to
tasks in which the objects are mostly visible, as op-
posed to tasks in which objects are almost com-
pletely occluded.
The LFF system was designed to locate industrial

parts that may contain several identical features or

patterns of features. However, as stated in the fifth

assumption, the efficiency of the system depends on
the fact that the objects can be distinguished on the
basis of small clusters. Large clusters take longer to
find. A corollary to this statement is that the LFF
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Fig. 40. Image of two hinge
parts that are not quite as
closely aligned as the pair
in Fig. 38.

Fig. 41. Locations of the
two hinge parts in Fig. 40.

system is slowed in its progress not by the number
of objects to be recognized, but by the size of the
ambiguous clusters. Fortunately, most parts-even
machined parts that tend to contain patterns of iden-
tical features-have small distinguishing clusters.
The sixth assumption is somewhat of a catchall,

but the intent is to rule out highly parallel matching
techniques that require massively parallel hardware
to make them practical. Such devices and methods
will certainly be developed, but at least for the im-
mediate future we are limited to a sequential ma-
chine. In light of that fact, we want to take advan-
tage of the opportunity available in many industrial
tasks to analyze models of the objects to be recog-
nized, so as to improve the speed and reliability of
the recognition process.
We plan to continue the investigation of general-

purpose techniques for analyzing models of objects
and selecting key features to be used at run time.
We plan to extend the LFF selection procedure by
having it explore more combinations of nearby fea-
tures and by improving its evaluation of them. To
this end, we are considering techniques for incor-
porating the cost and reliability of locating features,
as well as other techniques for rating features ac-
cording to the number of goals they help achieve and
how they accomplish this.
The seventh assumption is not really an assump-

tion. It is rather a statement of our philosophy. We
believe that industrial vision systems will gain wide
acceptance only when they can be easily trained.

The easier the training, the more tasks they will be
used for. The concept of selecting key features auto-
matically is not limited to LFF strategy. A similar
selection process could be used to select the best

pairs of local features for a histogram-type matching
scheme. Since the number of feature pairs increases
as the square of the number of features, a judicious
reduction in the number of features could generate a
substantial saving.

In conclusion, it should be emphasized that the
LFF system is more than just an efficient technique
for recognizing and locating a large class of partially
visible objects. It is also a semiautomatic program-
ming system for selecting key features to be used in
its own locational strategy. From a global perspec-
tive, however, it represents but one small step
toward the development of fully automatic systems
with the dual capability of both strategy and feature
selection.

Appendix: Maximal-Clique Algorithm

For completeness, we describe here an algorithm for
locating all maximal cliques (i.e., completely con-
nected subgraphs) of a graph. The algorithm is es-
sentially a restatement of one described by Johnston
(1975). A more detailed description of this algorithm,
its derivation, and its uses can be found elsewhere
(Bolles 1979a).
The algorithm is a recursive procedure of three pa-
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Code Listing I. Algorithm
for locating all maximal
cliques of a graph.

rameters: C, P, and PuS. All three are sets that can
be efficiently represented as arrays of bit strings.
The set C represents a clique that is to be extended
into a maximal clique. The set P contains all the
&dquo;prospects&dquo; for extending the clique C. That is,
each member of P is directly connected to all nodes
in C. The members of P may not be connected to
each other, but all of them are directly connected to
all nodes in C. The set PuS is a union of P and the
set containing all &dquo;suspects&dquo; that could have been
used to extend C, but which were arbitrarily left out.
The algorithm is as shown in Code Listing 1.

The procedures designated by long names perform
the standard operations on sets, while the neighbors
procedure returns the set of nodes that are directly
connected to the node represented by the argument.
To list all maximal cliques in a graph, we set up the
global data structure that represents the graph and
make the call MaxCliques(emptySet, setOfAllNodes,
setOfAllN odes).

It is tempting to try to increase the efficiency of
the algorithm by carefully choosing X (e.g., choosing
the member of PuS that has the smallest number of

neighbors). However, the time required to select X
invariably exceeds the time saved by not pursuing
some dead-end paths. The simplicity of the algorithm
appears to be the key to its speed. Johnston (1975)

reported that it only took 0.569 s to produce and
count all 687 maximal cliques in a graph that con-
tained 48 nodes and in which 50% of the pairwise
compatibilities held. His program was written on an
International Computers Limited 1900-series com-
puter that has 48-bit double words and a memory
reference time of 300 ns.

If procedure calls are expensive, the efficiency of
this algorithm can be improved by unwrapping some
of the recursion. For example, if the parameter PuS
in the recursive call is empty, the clique can be
listed as a maximal clique without making the call.
This type of call can be avoided by moving the test
from the beginning of the algorithm to just before the
recursive call. If the argument PuS is not empty but
the argument P is, the call will not produce anything.
Such calls can also be avoided by inserting a test be-
fore the call.

If the only objective of the calling procedure is to
find either the largest maximal clique or those con-
taining some minimum number of nodes, the effi-
ciency of the algorithm can be improved by stopping
the recursive building of cliques when the number of
nodes in C plus the number of nodes in P is less
than the appropriate number. Here too, if this test is
placed before the recursive call, unnecessary calls
can be avoided.
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